首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   14篇
  国内免费   109篇
安全科学   1篇
废物处理   3篇
环保管理   6篇
综合类   131篇
基础理论   93篇
污染及防治   51篇
评价与监测   3篇
社会与环境   2篇
  2024年   1篇
  2023年   5篇
  2022年   7篇
  2021年   5篇
  2020年   6篇
  2019年   9篇
  2018年   15篇
  2017年   7篇
  2016年   5篇
  2015年   10篇
  2014年   12篇
  2013年   57篇
  2012年   16篇
  2011年   16篇
  2010年   20篇
  2009年   16篇
  2008年   14篇
  2007年   14篇
  2006年   10篇
  2005年   5篇
  2004年   7篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1992年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
排序方式: 共有290条查询结果,搜索用时 171 毫秒
11.
水体悬浮颗粒物对斜生栅藻生理生化及光合活性的影响   总被引:2,自引:1,他引:1  
通过研究不同浓度(30、40、50、60、70 mg·L-1)和不同粒径(0~75μm、75 ~ 96μm、96 ~150 μm、150~ 250 μm)水体悬浮颗粒物对斜生栅藻(Scenedesmus obliquus)叶绿素a含量、抗氧化系酶活性、脂质过氧化物丙二醛(MDA)含量、可溶性蛋白含量及光合参数变化的影响,探讨了水体悬浮颗粒物对斜生栅藻生理生化及光合活性影响的机制.结果表明,预处理与未处理悬浮颗粒物在一定浓度范围内会促进藻类生长,超过各自临界浓度(预处理为40 mg·L-1、未处理为50 mg·L-1)后,随着颗粒物浓度的增加会对藻类生长产生抑制现象未经处理的相同浓度不同粒径颗粒物对斜生栅藻都表现出抑制作用,0~75μm粒径组颗粒物作用下藻体内超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、MDA和可溶性蛋白质含量等均显著区别于其他粒径组的作用(p<0.05).经过预处理的相同浓度不同粒径颗粒物中,96~150μm粒径组对藻类的生长抑制较其他粒径组明显,且小粒径组颗粒物对藻类体内SOD、CAT、MDA和可溶性蛋白质含量等影响较大.受不同浓度悬浮颗粒物胁迫的斜生栅藻相对电子传递速率随着时间延长在一定程度上降低,但这种抑制作用在藻细胞的耐受范围,藻细胞可以通过自身调节将电子传递速率恢复到正常水平甚至更高以抵抗逆境环境.  相似文献   
12.
Oxidative stress and DNA damages induced by cadmium accumulation   总被引:22,自引:0,他引:22  
Experimental evidence shows that cadmium (Cd) could induce oxidative stress and then causes DNA damage in animal cells, however, whether such effect exists in plants is still unclear. In the present study, Vicia faba plants was exposed to 5 and 10 mg/L Cd for 4 d to investigate the distribution of Cd in plant, the metal effects on the cell lipids, antioxidative enzymes and DNA damages in leaves. Cd induced an increase in Cd concentrations in plants. An enhanced level of lipid peroxidation in leaves and an enhanced concentration of H2O2 in root tissues suggested that Cd caused oxidative stress in Vicia faba. Compared with control, Cd-induced enhancement in superoxide dismutase activity was significant at 5 mg/L than at 10 mg/kg in leaves, by contrast, catalase and peroxidaseactivities were significantly suppressed by Cd addition. DNA damage was detected by neutral/neutral, alkaline/neutral and alkaline/alkaline Comet assay. Increased levels of DNA damages induced by Cd occurred with reference to oxidative stress in leaves, therefore, oxidative stress induced by Cd accumulation in plants contributed to DNA damages and was possibly an important mechanism of Cd-phytotoxicity in Vicia faba plants.  相似文献   
13.
土壤酶参与土壤碳氮转化,同时土壤碳氮状况又是土壤酶活性的基础,而大气氮沉降通过影响土壤酶活性进而影响土壤CO_2释放.通过野外模拟试验,探讨不同氮沉降量对马尾松土壤呼吸和酶活性的影响,探索该区域马尾松土壤呼吸(Rs)与土壤温度(T)、土壤湿度(W)、Ure(脲酶)、Ive(转化酶)、CAT(过氧化氢酶)及ACP(酸性磷酸酶)的关系,为深入研究氮沉降对马尾松林森林生态系统的影响提供参考.2014年5月~2015年7月在缙云山马尾松林设置3个氮添加水平和一个无氮添加的对照处理:低氮[N_5,20 g·(m~2·a)~(-1)],中氮[N_(10),40 g·(m~2·a)~(-1)]、高氮[N_(15),60 g·(m~2·a)~(-1)]和对照[N0,0g·(m~2·a)~(-1)],每个处理量分4次,在每个季度开始各施1次,每个处理各9次重复,采用ACE(automated soil CO_2exchange station,UK)自动土壤呼吸监测系统分别对土壤呼吸、土壤温度和土壤湿度进行分析测定.结果表明:1土壤酶和土壤呼吸均具有明显的季节变化规律,各处理土壤呼吸均表现为夏季最高,其次是春季和秋季,最低为冬季,而各处理土壤酶活性则无一致的变化规律.2总体而言,氮沉降对土壤呼吸和酶活性均有抑制作用,且抑制程度随氮浓度增加而加强,但冬季氮沉降对马尾松林土壤呼吸有促进作用,春、夏、秋这3个季节氮沉降对Ure、Ive、CAT及ACP有抑制作用,而冬季氮沉降对4种土壤酶活性影响则存在差异.3逐步回归表明,无氮和低氮处理时,T、Ure和Ive对Rs的贡献较大,且随着T、Ure和Ive的增加,Rs也急剧增加;中氮处理时,T、Ure和CAT对Rs的贡献较大,Rs随着T、Ure和Ive的增加而增加;高氮处理时,Rs随着Ure的增加而降低,随着CAT和W的增加而增加.  相似文献   
14.
In this study we evaluated the effect of different fertilizer treatments on Brassica plants grown on boron-contaminated sediments. Experiments were conducted in the laboratory and on the lysimeter scale. At laboratory scale (microcosm), five different fertilizers were tested for a 35-d period. On the lysimeter scale, nitrogen fertilization was tested at three different doses and plants were allowed to grow until the end of the vegetative phase (70 d). Results showed that nitrogen application had effectively increased plant biomass production, while B uptake was not affected. Total B phytoextracted increased three-fold when the highest nitrogen dose was applied. Phytotoxicity on Brassica was evaluated by biochemical parameters. In plants grown in unfertilized B-contaminated sediments, the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and pyrogallol peroxidase (PPX) increased, whereas catalase (CAT) decreased with respect to control plants. Addition of N progressively mitigated the alteration of enzymatic activity, thus suggesting that N can aid in alleviating B-induced oxidative stress. SOD activity was restored to control levels just at the lowest N treatment, whereas the CAT inhibition was partially restored only at the highest one. N application also lowered the B-induced increase in APX and PPX activities. Increased glutathione reductase activity indicated the need to restore the oxidative balance of glutathione. Data also suggest a role of glutathione and phytochelatins in B defense mechanisms. Results suggest that the nitrogen fertilizer was effective in improving B phytoextraction by increasing Brassica biomass and by alleviating B-induced oxidative stress.  相似文献   
15.
通过对3,5-二硝基水杨酸(DNS)法测定还原糖含量各影响因素的筛选,优化确定了显色时间8 min,稳定时间10 min,最佳波长490 nm下进行吸光度测定的检测方法;分析分别以葡萄糖和麦芽糖作为外加碳源时,降解菌Pseudomonas putida B-31的生长情况和共代谢降解典型药物苯扎贝特(BZF)的过程。结果表明,降解菌只有在外加碳源的条件下才可正常生长,而且其在葡萄糖环境中生长得更好;拟合得到的葡萄糖、麦芽糖和BZF代谢动力学结果显示,葡萄糖对BZF去除的促进作用更为明显,同时从葡萄糖培养基中降解菌所提取的酶比活力要高于麦芽糖培养基,分析原因可能是葡萄糖所诱导的降解菌关键酶活力更强,而且还可能会产生不同的蛋白质点位。  相似文献   
16.
Abstract

A single i.p. dose (120 mg/kg) of thiram given to male Sprague‐Dawley rats caused a significant increase in the activity of SGOT and SGPT 24 hr post‐treatment indicating liver damage. A considerable diminution in the serum cholinesterase activity was also noted in the treated rats as against the control animals. Additional evidence for thiram‐induced liver toxicity is provided by the observation that there was approximately 50% inhibition of the activity of hepatic microsomal benzphetamine N‐demethylase with a concomitant decrease in the concentration of cytochrome P‐450, an important component of the mixed‐function oxidase system. Although not significant, hepatic glutathione levels were also depleted by thiram, probably making the liver susceptible to toxic injury.  相似文献   
17.
Extracellular, oxidative soil enzymes like monophenol oxidases and peroxidases play an important role in transformation of xenobiotics and the formation of organic matter in soil. Additionally, these enzymes may be involved in the formation of non-extractable residues (NERs) of xenobiotics during humification processes. To examine this correlation, the fate of the fungicide 14C metalaxyl in soil samples from Ultuna (Sweden) was studied. Using different soil sterilization techniques, it was possible to differentiate between free, immobilized, and abiotic (“pseudoenzyme”-like) oxidative activities. A correlation between the formation of metalaxyl NER and soil organic matter content, biotic activities, as well as extracellular phenoloxidase and peroxidase activities in the bulk soil and its particle size fractions was determined. Extracellular soil-bound enzymes were involved in NER formation (up to 8% of applied radioactivity after 92 days) of the fungicide independently from the presence of living microbes and different distributions of the NER in the soil humic subfractions.  相似文献   
18.
The joint action of pyrethroids, lambda-cyhalothrin (LC) in combination with organophosphates, fenitrothione (FNT) on antioxidant defense system and lipid peroxidation biomarkers in rat testes was studied. The results suggest that incubation of testes homogenate with different concentrations of insecticide mixture for different time intervals significantly decreased the activity of antioxidant enzymes, like glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT), and the level of reduced glutathione (GSH). In addition, a significant inhibition in transaminases (AST, ALT), phosphatases (AcP, AlP) activity and protein content were observed. On the other hand, FNT plus LC increased the cellular lipid peroxidation (LPO) level and the activity of lactate dehydrogenase (LDH). In conclusion, the use of insecticides mixture might cause marked oxidative damage in a concentration and time-dependent manner.  相似文献   
19.
The toxicity and rising costs of synthetic molluscicides have led to interest in compounds derived from locally growing plants that can be used as molluscicides. The aim of the present work was to study the effect of extracts of some Egyptian plants having lethal effect on snails of medical importance (Biomphlaria alexandrina) as well as on antioxidant and glutathione detoxification enzymes. Ethanolic extracts of locally growing plants Agave attenuata, Agave sislana, Phytolaca dodecandra and Euphorbia spllendens were applied as a contact poison to B. alexandrina, the intermediate host of Schistosoma mansoni. The LC50 of A. attenuata, A. sislana, P. dodecandra and E. spllendens are 82, 101, 98 and 98 mg/L, respectively. Glutathione and the enzymes involved in protection of the snail from reactive oxygen species namely, glutathione peroxidase, glutathione reductase, glutathione S-transferase, catalase, gamma glutamyl transferase increased in the survival snails exposed to high concentrations of A. attenuata. Glucose-6-phosphate dehydrogenase indirectly affecting glutathione reductase and the oxidation, reduction of glutathione significantly decreased in snails exposed to A. attenuata extracts. Superoxide dismutase level tend to decrease in snails exposed to A. attenuata of action. In conclusion A. attenuata is preferable when compared with synthetic molluscicides. The enzymes involved directly or indirectly in protection mechanism of the snail against A. attenuata are mainly responsible for snails survival.  相似文献   
20.
We are exploiting materials and concepts from food science to create functionalized, environmentally friendly derivatives of the biopolymer chitosan, a byproduct of seafood processing. Functional groups are grafted onto chitosan using tyrosinase, the enzyme responsible for food browning. The functionalizing groups studied include low-molecular-weight phenols derived from natural sources and high-molecular-weight proteins. The approach of using low-molecular-weight phenols to functionalize chitosan is illustrated with arbutin, a natural phenol found in pears. Results demonstrate that tyrosinase initiates reactions that lead to the conversion of arbutin–chitosan solutions into gels. These gels can be rapidly broken by treatment with the chitosan-hydrolyzing enzyme chitosanase, demonstrating that the chitosan derivatives remain biodegradable. We briefly review other studies in which low-molecular-weight natural phenols are enzymatically grafted onto chitosan to confer functional properties. The creation of co-polymers is illustrated by results in which tyrosinase is used to couple gelatin onto chitosan. Gelatin is a proteinaceous byproduct of meat production. The tyrosinase-generated gelatin–chitosan conjugates have been observed to offer interesting rheological and thermal properties. These results demonstrate the potential for using renewable resources and enzymatic processing to create environmentally friendly polymers with useful functional properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号